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Calculation of ground-state entropies of highly frustrated systems on fractal lattices
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The extensive ground-state entropy of frustrated systems on fractal lattices is investigated. Two methods of
calculation are proposed, namely, recursive and factorization approaches. In the recursive approach the calcu-
lation is based on exact recursion relations for the total number of ground states. The latter procedure, which
is in principle an approximation, is proposed as an alternative for dealing with complicated systems~for cases
where the recursive approach may become impracticable!, such as randomly frustrated models; it consists of
factorizing the total number of ground states in terms of the number of ground states at each hierarchy level.
Some examples of antiferromagnetic Ising models on different fractal lattices are considered, for which both
procedures are applied. It is shown that the factorization approach may lead, in some cases, to the exact
ground-state entropy, whereas in other cases it yields very accurate~although slightly lower! estimates.

PACS number~s!: 05.50.1q, 64.60.Ak, 65.50.1m
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I. INTRODUCTION

Frustrated magnetic models@1# represent one of the mos
interesting classes of systems in statistical mechan
Roughly speaking, the frustration@2# is a result of the com-
petition between interactions, in such a way that the mini
zation of the energy occurs with some interactions unsa
fied. Since one can usually vary the set of brok
interactions, frustration leads to a multiplicity of states w
the same energy. At low temperatures the frustration effe
play a crucial role in such a way that the physics of frustra
systems may present many new features quite different f
those of nonfrustrated models. In particular, the poss
presence of a nonzero ground-state~GS! entropy per particle
~usually composed of residual entropy!, makes the frustrated
systems exceptions to the third law of thermodynamics.

Many real systems display frustration, such as ice@1#,
spin glasses@3–5#, and diluted antiferromagnets@6,7#. For
spin glasses, frustration is combined with disorder in suc
way that the existence of many low-temperature states le
to a very slow dynamics, associated with the phenomeno
aging, with the system remaining out of equilibrium even
macroscopic time scales@8#.

Theoretical investigations on models characterized
frustration has attracted the attention of many workers@1–5#.
A large diversity of uniform~with no randomness!, fully
frustrated models has been considered@1#; for such systems
the total number of GS’s,NGS, usually increases exponen
tially with the number of sitesN,

NGS;exp~hN!, ~1.1!

whereh is some positive finite number@for Ising systems,
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0<h< log 2, since the maximum number of states
2N5exp(N log 2)#. In the thermodynamic limit, one obtain
thath5s0, wheres0 denotes the residual entropy~herein we
work in units of kB51). The prototype of fully frustrated
models is the antiferromagnetic Ising model on a triangu
lattice, for which the residual entropy has been calcula
exactly@9#, s0>0.323 066. For randomly frustrated system
like spin glasses, one has to deal with the average numbe
GS’s, @NGS#J where@ #J represents an average over the d
order; due to the averaging process,h is not related to the GS
entropy, but rather, to the GS complexity@10#. A behavior
similar to that of Eq.~1.1! holds for @NGS#J in the infinite-
range-interaction Ising spin glass@11#, with h'0.20 @12#.
The average number of GS’s has been calculated for sh
range Ising spin glasses on diamond hierarchical lattic
with different probability distributions for the couplings@13#:
one finds a zero GS complexity per particle in the case
continuous probability distributions, whereas for a bimod
(6J) distribution an exponential increase in@NGS#J has been
verified, on lattices of fractal dimensionsdl<d<5 ~where
dl'2.58 represents the respective spin-glass lower-crit
dimension!, with h varying roughly from 0.16~for d5dl) to
0.27 ~for d55). However, an outstanding question conce
the average numbers of GS’s in nearest-neighbor-interac
spin glasses defined on Bravais lattices@5#.

The study of magnetic models on fractal lattices@15#,
besides serving in practice to model natural materials suc
porous rocks, aerogels, sponges, etc., has provided u
results that contribute to our comprehension of the co
sponding systems on Bravais lattices. In particular, hierar
cal lattices ~HL’s!—generated through recursiv
procedures—are much easier to handle@under the real-space
renormalization group~RG!#, in such a way that exact result
may be obtained for short-range systems@16,17#. For pure
systems defined on Bravais lattices, one may obtain
equations through a spin-decimation process; in the co
4597 ©2000 The American Physical Society
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sponding HL, such a procedure is exact for discrete class
spin variables if, within a few RG steps one obtains nonp
liferated RG equations connecting two successive hierar
levels. Some particular HL’s have been very successfu
mimicking Bravais lattices@17#, e.g., providing exact critica
temperatures and exponents of magnetic models on
square lattice.

In the present work we present two methods for calcu
ing the GS degeneracy of frustrated systems defined
HL’s. In the first method, herein called the recursive a
proach~RA!, one calculates the GS degeneracy through
act recursion relations based on the recursive propertie
the particular lattice. In the second method, the factoriza
approach~FA!, the total number of GS’s at hierarchy leveln
is expressed as a product of a properly defined partial n
ber of GS’s at hierarchy levelsn,n21, . . . ,1 @13#. As will
be seen below, both approaches lead to the exact GS de
eracy only for very simple systems. The RA, which in pri
ciple always yields the exact GS degeneracy, may bec
difficult to operationally implement in some cases; for co
plicated systems, such as spin glasses, the FA appears
simple and good approximation for the estimation of the
degeneracy@13#. The present paper is organized as follow
In Sec. II we discuss the RG transformation at zero temp
ture. In Sec. III we present the methods for calculating
GS degeneracies. In Sec. IV we apply both methods to a
ferromagnetic Ising models defined on some HL’s. Fina
in Sec. V we present our conclusions.

II. THE RENORMALIZATION AT ZERO TEMPERATURE

The most common real-space RG recipe@18# consists of
summing over some spin variables of the system, a pro
dure known as a partial trace. As a result of such an op
tion, one obtains an effective~or renormalized! interaction
between the remaining spins, with a relation between
renormalized and original interactions. In a HL, a part
trace over the spins of thekth hierarchy leads to an effectiv
interaction among the spins of the (k21)th hierarchy level,
and to a corresponding recursive relation between the in
actions in successive hierarchy levels. In the case of disc
classical spin variables, the RG procedure may lead to
exact recursion relation for a HL, in the case of pure syste
if no proliferation of RG equations occurs@16,17#; one says
that the space of parameters is closed under the RG pro

Herein we shall restrict ourselves to Ising spin syste
defined in terms of the Hamiltonian,

H52(̂
i j &

Ji j SiSj ~Si561!, ~2.1!

where the sum(^ i j & is restricted to nearest-neighbor pairs
spins on a given HL. For pure systems@where the coupling
constants$Ji j %5J (;pairŝ i j &)#, one may obtain exact re
cursion relationst85 f (t) for the thermal transmittivities@17#
t5tanh@J/(kBT)# of two successive hierarchy levels,t8 @hier-
archy level (k21)# andt ~hierarchy levelk). Such recursion
relations lead to plotst8 versust, like the ones exhibited in
Fig. 1. In fact, Fig. 1~a! refers to a HL generated in such
way that at each step a single bond is replaced by the pl
b53 Wheatstone-bridge-like cell of Fig. 2~a!, whereas for
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Fig. 1~b! a bond is replaced by the nonplanar Wheatsto
bridge cell shown in Fig. 2~c!.

Let us now consider, in such systems, the ze
temperature limit,T→0. If the interactions at the last hier
archy level ~say the nth hierarchy! are ferromagnetic (J
.0), there are no frustrations, and the system is domina
by the zero-temperature fixed pointt85t51, with positive
finite effective interactions between the spins at the low
hierarchy levels~hierarchiesn21, . . . ,1,0).However, if the
interactions at thenth hierarchy are antiferromagnetic (J
,0), there are frustrations in the system, in such a way
the examples exhibited in Fig. 1 present no typical ze
temperature point, i.e., fort521 one obtains limT→0t8(T)
5a, wherea is a constant (aÞ61). Such a behavior ha
also been observed in other systems, like the antiferrom
netic three-state Potts model on diamond HL’s@19#. One
obtain that the effective interactions between the spins at
(n21)th hierarchy level,

J85 lim
T→0

kBT tanh21@ t8~T!#, ~2.2!

are driven to zero, at the first renormalization step, ifaÞ

FIG. 1. Plots of the renormalized transmissivityt8 vs the origi-
nal transmissivityt „t5tanh@J/(kBT)#… for the Ising model on HL’s
composed of unit cells:~a! The b53 Wheatstone-bridge-like cel
@see Fig. 2~a!#. ~b! Theb52 Wheatstone-bridge nonplanar cell@see
Fig. 2~c!#. The zero-temperature point (t521) is given by a
5 limT→0t8(T)521/3 in case~a!, anda55/9 in case~b!. For the
cells of Figs. 2~b! and 2~d!, one obtains plots similar to the on
shown in ~b!, with a51 and a5

1
2 (1428A3)'0.0718, respec-

tively.
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FIG. 2. The basic unit cells that define th
HL’s considered. ~a! The b53 planar
Wheatstone-bridge-like cell.~b! The b52 planar
Wheatstone-bridge cell.~c! The b52 non-planar
Wheatstone-bridge cell.~d! The b52 Sierpinski
gasket cell. The spins at the terminal sites~empty
circles, denoted by letters! belong to previous hi-
erarchy levels and are connected to other spins
the lattice; the spins at the internal sites~black
circles, denoted by numbers! are decimated
throughout the renormalization process. In a
cases the basic unit cells correspond to the HL
its hierarchy levelk51.
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61. Therefore, further RG steps~hierarchy levelsn21,n
22, . . . ,0)become trivial, with no interactions between th
spins.

Such a curious zero-temperature behavior implies that
spins belonging to hierarchy levelsn21,n22, . . . ,0 are
completely uncorrelated~as in a high-temperature phase!,
contributing the maximum number of states to the GS deg
eracy. This is a crucial point for the calculation of the G
degeneracy of some frustrated HL’s, as will be seen belo

III. METHODS OF CALCULATION

Let us consider a HL defined in such a way that at hi
archy level 0 one hasN(0) sites connected byNb

(0) bonds.
The lattice is generated through a given recursive rule
Fig. 2 we represent typical cells corresponding to the hie
chy level 1 of some HL’s; such cells will be considered
the basic unit cells for the lattice at a givenkth hierarchy
level. For the cells shown in Figs. 2~a!–2~c!, one has
N(0)52 ~sites i and j ) andNb

(0)51; the HL is generated in
such a way that, at each step, a single bond is replaced
unit cell. In Fig. 2~d! one has the unit cell of a Sierpinsk
gasket@15# with a scaling factorb52, for which N(0)53
~sites i, j, andk) andNb

(0)53; the Sierpinski gasket is gen
erated by removing, at each step, one-fourth of the area@the
gray triangular part of Fig. 2~d!# from each triangle of the
lattice. A given HL, at itskth hierarchy level, will be com-
posed ofNc

(k) unit cells, each of them withP terminal spins
~due to the recursive rule for the generation of the lattice,
has thatP5N(0)).
e

n-

.

-

n
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Let us now fix the terminal spins of each unit cell; for a
Ising system, there are 2P ways of doing this for a single
cell. For each fixed configuration of terminal spins in a u
cell, one may have a certain number of GS’s associated w
the internal spins of the cell. We shall denote by$ga% the
possible set of GS degeneracies associated with a unit ce
the HL; the labela, which refers to configurations of termi
nal spins of the cell presenting different values of degene
cies, may vary, in principle, from 1 to 2P21 ~since time-
reversed states contribute to the same GS degeneracie!. In
what follows, we introduce two different methods for th
calculation of GS degeneracies of frustrated HL’s.

A. Recursive approach

The RA is based on the recursive properties of the p
ticular HL; the central idea is to express GS degeneracie
a given hierarchy level in terms of those of the previo
hierarchy. By fixing the spins of the zeroth hierarchy lev
one has a set of$Ga

(k)% possible degeneracies at an arbitra
hierarchy levelk, in such a way that for each value ofa one
has a recursion relation

Ga
(k)5Ca~G1

(k21) ,G2
(k21) , . . . !. ~3.1!

Since one may compute easily the set of degeneracie
hierarchy level 1$Ga

(1)%[$ga%, the recursion relations in Eq
~3.1! may be followed up to any desired hierarchy level. T
total number of GS’s of the HL at itsnth hierarchy level is
expressed as
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NGS
(n)5(

a
aaGa

(n) , ~3.2!

where the coefficientsaa count how many different configu
rations of the spins at the zeroth level contribute to the sa
Ga

(n) .
If one succeeds in obtaining the recursion relations in

~3.1! exactly, the RA yields the exact number of GS’s of t
HL at its nth hierarchy level. However, this turns out to be
difficult task in some cases, like for disordered systems. N
we introduce a much simpler method, as an alternative
working with systems for which the recursion relations
Eq. ~3.1! are difficult to obtain.

B. Factorization approach

An alternative form of this method was already employ
for the calculation of GS degeneracies of Ising spin glas
on diamond HL’s@13#; herein we shall define the FA for th
simpler case of pure systems. Let us consider a given H
its nth hierarchy level; one may partially count the numb
of GS’s of the HL by fixing the terminal spins of each un
cell. We shall denote the number representing this pa
counting byG (n). In a HL all unit cells present terminal spin
belonging to lowest-level hierarchies; under the RG pro
dure, each terminal spin will become an internal one at
respective hierarchy level. Therefore, one may write

NGS
(n)5G (n)G (n21)G (n22)

•••G (1)A, ~3.3!

where the factorA corresponds to the number of states as
ciated with hierarchy level 0. It is important to mention th
the total number of GS’s, as written in Eq.~3.2!, may be
factorized in the form of Eq.~3.3! only for very particular
types of the recursion relations~3.1!; in most of the cases
Eq. ~3.3! represents an approximation forNGS

(n) . Typical ex-
amples for which the FA may be considered as a us
approximation are randomly frustrated systems, like Is
spin glasses on hierarchical lattices@13#.

One may see easily that, for an arbitrary hierarchy levek,
the partial counting may be written as

G (k)5)
a

~ga!Nc,a
(k)

, ~3.4!

whereNc,a
(k) denotes the number of unit cells with degenera

ga in the HL at itskth hierarchy level~obviously, the total
number of cells at thekth hierarchy level,Nc

(k) , may be
obtained from(aNc,a

(k) 5Nc
(k)). In simple systems,Nc,a

(k) may
be calculated exactly, whereas in more complicated pr
lems one may replaceNc,a

(k) with the average value@13#

fa
(k)5Nc

(k)Fa
(k) , (

a
fa

(k)5Nc
(k) , ~3.5!

whereFa
(k) represents the probability of finding a unit cell

typea at hierarchy levelk @14#. Such a procedure leads to a
average estimate

@G (k)#av5)
a

~ga!fa
(k)

. ~3.6!
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Next we apply our methods to four examples of frustra
HL’s; we show that in two of them, the FA yields the exa
residual entropy in the thermodynamic limit, whereas for t
other two, the FA provides a lower estimate for the numb
of GS’s.

IV. APPLICATIONS

Let us consider the antiferromagnetic Ising model defin
through the Hamiltonian in Eq.~2.1! @with the coupling con-
stants$Ji j %5J,0 (;pairŝ i j &)#, on HL’s composed of the
unit cells shown in Fig. 2. For the cells in Figs. 2~a!–2~c!
~which belong to the family of Wheatstone-bridge cells@17#!
the corresponding HL’s are generated in such a way tha
each step, a single bond is replaced by a unit cell. The s
ing factor isb53 for the cell of Fig. 2~a!, whereasb52 for
those in Figs. 2~b! and 2~c!; the fractal dimensions of the
respective HL’s ared5(log 18/log 3)>2.631 @cell in Fig.
2~a!#, d5(log 5/log 2)>2.322 @cell in Fig. 2~b!#, and d
5(log 12/log 2)>3.585 @cell in Fig. 2~c!#. In Fig. 2~d! one
has the unit cell of ab52 Sierpinski gasket@15#; since each
triangle at hierarchy levelk is replaced by three new triangle
with a half of the side at levelk11, i.e., each triangle will
generate three new sites@sites 1, 2, and 3 in Fig. 2~d!#, the
fractal dimension of such a HL isd5(log 3/log 2)>1.585. In
what follows, we shall apply both methods described abo
to such systems.

A. bÄ3 planar Wheatstone-bridge-like HL

Let us now consider the antiferromagnetic Ising model
the HL composed of the unit cells shown in Fig. 2~a!. At an
arbitrary hierarchy levelk, one has the total number of bond
and unit cells given, respectively, by

Nb
(k)518k, Nc

(k)518k21, ~4.1!

whereas the number of sites belonging to levelk, Ñ(k), and
the total number of sites of the HL,N(k):

Ñ(k)58Nc
(k) , N(k)521

8

17
~18k21!. ~4.2!

It is important to remember that the RG transformation
the present HL leads to the plott8 versust shown in Fig.
1~a!, where in the zero-temperature limit (t521) one ob-
tains a5 limT→0t8(T)521/3. According to Eq.~2.2!, the
interactions become zero after the first RG step; theref
for a HL at thenth hierarchy level, the interactions are to b
considered as antiferromagnetic atk5n and zero fork5n
21,n22, . . . ,0.

Let us now apply the RA for the present system; we sh
first consider the casen51. Since the terminal spins (Si and
Sj ) belong to the zeroth hierarchy level, the effective inte
action between them is zero. Therefore, the GS degenera
of the cell in Fig. 2~a! may be easily calculated, by consid
ering all possible states for the terminal spins, as shown
low.

~i! Terminal spins parallel (Si5Sj )—there are two GS
configurations (g152), given by four broken bonds each
either one breaks the set of bonds$Ji1 ,Ji3 ,Jj 6 ,Jj 8% or
$Ji2 ,Ji4 ,Jj 5 ,Jj 7%.
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~ii ! Terminal spins antiparallel (SiÞSj )—there are also
two GS configurations (g25g152), given by four broken
bonds each: either one breaks the set of bo
$Ji1 ,Ji3 ,Jj 5 ,Jj 7% or $Ji2 ,Ji4 ,Jj 6 ,Jj 8%.

Sinceg25g1, for the total number of GS’s at hierarch
level 1 @see Eq.~3.2!# one may write

NGS
(1)5a1g1 , ~4.3!

wherea154, i.e,NGS
(1)58.

The casen52 may also be worked out easily, by consi
ering antiferromagnetic interactions fork52 and zero inter-
actions fork51 and 0. Since each bond of hierarchy leve
will generate a unit cell with degeneracyg1 at hierarchy
level 2, one obtains

NGS
(2)5a1G1

(2) , G1
(2)5256g1

18, ~4.4!

where the factors 285256 anda154 come from the sums
over the spins of hierarchy levels 1 and 0, respectively. T
procedure may be carried for thenth hierarchy level:

NGS
(n)5a1G1

(n) , G1
(n)5256~G1

(n21)!18. ~4.5!

Using the fact thatG1
(1)5g152, one may obtain the GS

entropy per spin in the thermodynamic limit,

s05 lim
n→`

1

N(n)
logNGS

(n)5
25

144
log 250.120 338 . . . , ~4.6!

which represents about 17.36% of the maximum poss
entropy per spin.

Let us now apply the FA for this system. In Eq.~3.3!, one
has that

G (n)5~g1!Nc
(n)

, G (k)52Ñ(k)
~k51,2, . . . ,n21!,

~4.7!
A54.

Substituting such results into Eq.~3.3!, and using the fact
that

(
k51

n21

Ñ(k)5
8

17
~18n2121!, ~4.8!

one may easily obtain the same residual entropy of Eq.~4.6!.
In this simple example, the FA yields the exact resid

entropy as well. This occurs because the degeneracies o
unit cell of Fig. 2~a! are the same in both situations of pa
allel and antiparallel terminal spins. In this case, Eq.~4.5!
may be written as

NGS
(n)5a1Tr$k51,2, . . . ,n21%~g1!Nc

(n)

5a1~g1!Nc
(n)

Tr$k51,2, . . . ,n21%1, ~4.9!

where Tr$k51,2, . . . ,n21% denotes a trace over all possib
states of the spins belonging to hierarchies 1,2, . . . ,n21.
Comparing with Eq.~4.7!, one recovers the product of Eq
~3.3!, characteristic of the FA. It should be mentioned tha
is straightfoward to show that the FA also leads to the ex
residual entropy for the cases where the unit cells pre
s

e
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t
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different degeneracies, bu the total number of ground st
may be expressed as a single product of powers of s
degeneracies.

It should be mentioned that it is straightfoward to sho
that the FA also leads to the exact residual entropy for
cases where the unit cells present different degeneracies
the total number of ground states may be expressed
single product of powers of such degeneracies.

B. bÄ2 planar Wheatstone-bridge HL

In this example, we consider the antiferromagnetic Is
model on the HL defined through the unit cell exhibited
Fig. 2~b!. The RG transformation for the present HL leads
a plot t8 versust similar to the one shown in Fig. 1~b!, but in
the zero-temperature limit (t521) one gets a
5 limT→0t8(T)51. This leads to ferromagnetic interaction
just after the first RG step; for a HL at thenth hierarchy
level, the interactions are to be considered as antiferrom
nectic atk5n and ferromagnetic fork5n21,n22, . . . ,0.

In order to minimize the energy of a given cell, its term
nal spins~which belong to a hierarchy levelk,n) should be
parallel to one another@Si5Sj in the cell of Fig. 2~b!#.
Clearly, one sees that there is a single ground-state con
ration, characterized by the breaking of its central bo
(J12). Since this is valid for all cells of the HL, both meth
ods~RA and FA! yield the trivial result for the total numbe
of ground states,NGS

(n)52. Although the HL composed of the
cells of Fig. 2~b! appears to be, at first glance, a fully fru
trated system, it indeed corresponds to a simple model w
no residual entropy; this is a consequence of the fact
each pair of triangular plaquettes in a unit cell share a sin
common bond.

In the next two examples, one will get more complicat
recursion relations for the total number of GS’s in such
way that the FA will lead to an approximate estimate f
NGS

(n); in fact, the FA result will be a lower estimate, as com
pared to the exact value obtained through RA.

C. bÄ2 nonplanar Wheatstone-bridge HL

We shall now investigate the antiferromagnetic Isi
model on the HL defined through the unit cell exhibited
Fig. 2~c!. The number of bonds, cells, sites belonging
level k, and total number of sites, at an arbitrary hierarc
level k, are given respectively, by

Nb
(k)512k, Nc

(k)512k21, ~4.10!

Ñ(k)54Nc
(k) , N(k)521

4

11
~12k21!. ~4.11!

The RG transformation yields the plott8 versust shown in
Fig. 1~b!, with the zero-temperature limit given byt521
anda5 limT→0t8(T)55/9. As discussed above, this leads
independent spins right after the first RG step; therefore,
a HL at thenth hierarchy level, the interactions will be con
sidered as antiferromagnetic atk5n and zero for all other
hierarchy levels.
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Let us now implement the RA, starting, as usual, with t
casen51. The GS configurations and corresponding deg
eracies associated with the cell of Fig. 2~c! are described
below.

~i! Terminal spins parallel (Si5Sj )—there are three GS
configurations (g153), given by four broken bonds each
$J12,J23,J34,J41% or $Ji2 ,Ji4 ,Jj 2 ,Jj 4% or $Ji1 ,Ji3 ,Jj 1 ,Jj 3%.

~ii ! Terminal spins antiparallel (SiÞSj )—there are two
GS configurations (g252), given by four broken bonds
each:$Ji2 ,Ji4 ,Jj 1 ,Jj 3% or $Ji1 ,Ji3 ,Jj 2 ,Jj 4%.

For the total number of GS’s at hierarchy level 1, one m
write

NGS
(1)5a1g11a2g2 , ~4.12!

wherea15a252, i.e,NGS
(1)510. The casen52 may also be

worked out easily; each of the 12 bonds of the cell ink51
will generate a new cell presenting either one of the deg
eraciesg1 or g2, depending on its terminal spins. One o
tains

NGS
(2)5a1G1

(2)1a2G2
(2) , ~4.13a!

G1
(2)5g1

1214g1
8g2

414g1
6g2

617g1
4g2

8 , ~4.13b!

G2
(2)52g1

8g2
4112g1

6g2
612g1

4g2
8 . ~4.13c!

For a HL at itsnth hierarchy level,

NGS
(n)5a1G1

(n)1a2G2
(n) , ~4.14a!

G1
(n)5~G1

(n21)!1214~G1
(n21)!8~G2

(n21)!4

14~G1
(n21)!6~G2

(n21)!617~G1
(n21)!4~G2

(n21)!8,

~4.14b!

G2
(n)52~G1

(n21)!8~G2
(n21)!4112~G1

(n21)!6~G2
(n21)!6

12~G1
(n21)!4~G2

(n21)!8, ~4.14c!

where G1
(1)5g153 and G2

(1)5g252. The recursion rela-
tions in Eqs.~4.14! may be iterated numerically; by doing s
one may obtain the residual entropys0 for a HL at a given
hierarchy level, as shown in Table I. One observes a ra
convergence to the thermodynamic limit, in such a way t
for n57 we obtains050.269 8163(3), which represents
about 38.93% of the maximum possible entropy per spin

We shall now treat the problem within the FA; one o
tains thatA54, whereas

G (n)5~g1!Nc,1
(n)

~g2!Nc,2
(n)

, G (k)52Ñ(k)
~k51,2, . . . ,n21!,

~4.15a!

with

(
k51

n21

Ñ(k)5
4

11
~12n2121!. ~4.15b!

Since one has zero couplings for hierarchiesk,n, F1
(n)

5F2
(n)5 1

2 , and so we replaceNc,1
(n) and Nc,2

(n) by f1
(n)5f2

(n)

5 1
2 Nc

(n) @see Eq.~3.5!#. Using such results one obtains tha
e
-

y

n-

id
t

logNGS
(n)>F21

4

11
~12n2121!G log 21

1

2
12n21log 3

1
1

2
12n21log 2, ~4.16!

and so, in the thermodynamic limit, the residual entropy
comes

s0>
19

96
log 21

11

96
log 350.263 068 . . . , ~4.17!

which yields a relative discrepancy of about 2.5% with r
spect to the value computed iteratively from the RA.

The FA, which is much simpler to implement than th
RA, leads in this case to a slightly lower estimate for t
residual entropy, as may be seen in Table I and Fig. 3~a!.
Below, we give a proof that the FA should yield a low
estimate than the RA, for any HL satisfying the followin
requirements.

~i! The unit cells exhibit two different GS degeneraci
(g1 andg2).

~ii ! The interactions are antiferromagnetic in last hier
chy and zero for the lower hierarchy levels.

~iii ! The recursion relations are written as sums of pro
ucts of different powers ofg1 andg2 @like the ones in Eqs.
~4.14!#.

In fact, Eqs.~4.14! lead to the following form for the
number of GS’s:

NGS
(n)5(

m
~g1!Nc,1

(n)$m%~g2!Nc,2
(n)$m%, ~4.18!

where(m denotes a sum over all frustrated configurations
to hierarchyn21, whereasNc,a

(n) $m% denotes the number o
cells, of configurationm, with degeneracyga (Nc,1

(n)$m%
1Nc,2

(n)$m%5Nc
(n)). One may also write

NGS
(n)5~g2!Nc

(n)

(
m

S g1

g2
D Nc,1

(n)$m%

. ~4.19!

Since (g1 /g2).1, the right-hand side of the equation abo
is a convex function, and using the general prope
1/N( i f (xi)> f ( x̄) one obtains that

NGS
(n)>~g1!f1

(n)
~g2!f2

(n)
NGS

(n21)5@G (n)#avNGS
(n21) ,

~4.20!

where@G (n)#av is defined in Eq.~3.6!. Since the spins in the
hierarchy levelsk5n21,n22, . . . ,0 aresubject to zero in-
teractions, the number of GS’s at the (n21)th hierarchy
level, NGS

(n21) , factorizes in the FA form of Eq.~3.3!. There-
fore, one obtains

NGS
(n)>@G (n)#avG (n21)G (n22)

•••G (1)A, ~4.21!

where the left- and right-hand sides of the equation ab
represent the total number of GS’s of the HL calculat
throught the RA and FA methods, respectively.
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D. bÄ2 Sierpinski gasket

Let us now consider the fully frustratedb52 Sierpinski
gasket, as defined above@see cell in Fig. 2~d!#. It is important
to remember that the residual entropy of this system
already been calculated exactly, through other meth
@20,21#; in such works, the basic unit of the HL was consi
ered as a single triangle~i.e., the system at its zeroth hie
achical level!. Herein we shall keep the same conventi
used in the previous applications, i.e., our unit cell will
the one shown in Fig. 2~d!, i.e., the HL at hierarchy levelk
51. Therefore, the HL will be composed of unit cells wi
three terminal spins, as well as three internal spins each
number of cells, sites belonging to levelk, and total number
of sites, at an arbitrary hierarchy levelk, are given, respec
tively, by

Nc
(k)53k21, Ñ(k)53Nc

(k) ,

N(k)531
3

2
~3k21!5

3

2
~3k11!. ~4.22!

For this system, the RG yields a plott8 versust similar to the
one shown in Fig. 1~b!, with the zero-temperature limita
5 limT→0t8(T)5 1

2 (1428A3)>0.072; therefore, the antifer
romagnetic interactions of the last hierarchy level will lead
zero interactions for all lower hierarchy levels.

Let us now consider this system under the RA, start
with n51. As described below, there are only two distin
GS degeneracies for the cell of Fig. 2~d!, depending on
whether the terminal spins at sitesi, j, andk are all parallel,
or one of them is antiparallel to the remaining ones.

~i! Terminal spins parallel (Si5Sj5Sk)—there are four
GS configurations (g154), given by three broken bond
each: $J12,J23,J31% or $Ji1 ,Jj 1 ,J23% or $Ji2 ,Jk2 ,J13% or
$Jj 3 ,Jk3 ,J12%. There are two possible configurations for te
minal spins parallel, and soa152.

~ii ! One terminal spin different from the other two (Si
5SjÞSk)—there are three GS configurations (g253), given
by three broken bonds each:$Ji2 ,Jk3 ,J13% or $Ji2 ,Jj 3 ,J23%

TABLE I. Residual entropys0 of the antiferromagnetic Ising
model on HL’s composed of unit cells in Figs. 2~c! and 2~d!, cal-
culated by two different methods, RA~exact! and FA ~approxi-
mate!, for typical lattice sizes (n denotes the hierarchy level!. One
observes that the first two columns@Fig. 2~c!, HL# exhibit a much
quicker convergence to the thermodynamic-limit value ofs0 than
the other two@Fig. 2~d!, HL#.

n Fig. 2~c! HL Fig. 2~c! HL Fig. 2~d! HL Fig. 2~d! HL
~RA! ~FA! ~RA! ~FA!

2 0.282369 0.276101 0.513020 0.511365
3 0.270853 0.264185 0.500154 0.498381
4 0.269888 0.263161 0.495447 0.493631
5 0.269820 0.263076 0.493826 0.491995
6 0.269817 0.263069 0.493280 0.491444
7 0.269816 0.263068 0.493098 0.491260
11 0.493007 0.491169
14 0.493006 0.491168
15 0.493006 0.491167
s
s

he

g
t

or $Jj 3 ,Jk2 ,J12%. By permutation of the terminal spins, on
may obtain a total of six possible configurations with such
GS degeneracy, and soa256.

One obtains an equation similar to Eq.~4.12!, leading to
NGS

(1)524. The Sierpinski gasket atn52 is composed by
three unit cells, which may present either one of degene
cies g1 or g2 each. One obtains an equation similar to E
~4.13a!, with

G1
(2)5g1

313g1g2
214g2

3 , ~4.23a!

G2
(2)5g1

2g214g1g2
213g2

3 . ~4.23b!

The above results may be generalized for the Sierpinski g
ket at itsnth hierarchy level,

NGS
(n)5a1G1

(n)1a2G2
(n) , ~4.24a!

FIG. 3. The GS entropy per spin~residual entropy! for different
hierarchy levelsn, as calculated by the RA~black squares! and FA
~empty squares! for HL’s composed of unit cells:~a! The b52
non-planar Wheatstone-bridge cell.~b! The b52 Sierpinski gasket
cell.
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G1
(n)5~G1

(n21)!313G1
(n21)~G2

(n21)!214~G2
(n21)!3,

~4.24b!

G2
(n)5~G1

(n21)!2G2
(n21)14G1

(n21)~G2
(n21)!213~G2

(n21)!3,
~4.24c!

whereG1
(1)5g154 andG2

(1)5g253. The residual entropy
may be obtained by iterating numerically the above recurs
relations. In Table I we present the values ofs0 for different
hierarchy levels. Forn515 we obtains050.493 006 12(2),
which is in agreement, up to seven digits, with the values0
50.493 006 107 . . . @21#.

Let us now consider the present system under the FA;
obtains thatA58, whereas

G (n)5~g1!Nc,1
(n)

~g2!Nc,2
(n)

, G (k)52Ñ(k)
~k51,2, . . . ,n21!

~4.25a!

and

(
k51

n21

Ñ(k)5
3

2
~3n2121!. ~4.25b!

As above, we replace eachNc,a
(n) with the corresponding av

erage valuefa
(n) ; since one has zero couplings for hiera

chies k,n, Eq. ~3.5! gives f1
(n)5 1

4 Nc
(n) and f2

(n)5 3
4 Nc

(n) .
Therefore,

logNGS
(n)>F2

3
3n1

3

2G log 21
3

4
3n21log 3, ~4.26!

and so, in the thermodynamic limit,

s0>
4

9
log 21

1

6
log 350.491 167 . . . , ~4.27!

representing a relative discrepancy of about 0.4% with
spect to the value computed iteratively from the RA.

The proof carried in Eqs.~4.18!–~4.21! also holds for the
present case, in such a way that the total number of G
calculated through the FA is always a lower estimate w
respect to that of the RA@see Table I and Fig. 3~b!#.

V. CONCLUSION

We have calculated the ground-state entropy of frustra
Ising systems on hierarchical lattices. Two methods w
introduced: the recursive and factorization approaches.
first one is based on exact recursion relations for the t
number of ground states, whereas in the latter one writes
total number of ground states as a product of the numbe
ground states at each hierarchy level by fixing the spins
the lower-level hierarchies. Whenever one succeeds in fi
d

n

e

-

’s
h

d
e
he
al
he
of
f

d-

ing the exact recursion relations, the recursion appro
yields the exact ground-state entropy. The factorization
proach yields, in principle, an approximate number
ground states; however, it may lead to the exact ground-s
entropy, in the thermodynamic limit, for some simple sy
tems, presenting one of the following properties:~i! systems
for which the unit cell presents the same ground-state deg
eracy for different configurations of its terminal spins; a
~ii ! systems where the total number of ground states may
expressed as a single product of powers of the degenera
of the unit cell. For more complicated models, such as d
ordered systems, the recursive approach becomes a diffi
task; in such cases, the factorization method is very use
We have shown that the factorization method, applied
pure systems characterized by a unit cell presenting two
tinct ground-state degeneracies, yields an estimate for
ground-state entropy per spin, which is always equal to@in
case~ii ! mentioned above# or less than the exact value.

We have applied the above-mentioned methods to the
tiferromagnetic Ising model defined on four hierarchical l
tices containing triangular plaquettes. For all cases, we h
succeeded in calculating the exact residual entropy; in two
them ~one of which is trivial!, the factorization approach
provided the exact answer, whereas for the other two, su
method yielded a lower, although very accurate, estim
~the maximum relative discrepancy found was 2.5%!. One of
the systems considered is fully frustrated, namely, the S
pinski gasket, with a scaling factorb52; the calculated re-
sidual entropy wass0>0.493, which should be compared
with the well known result for the antiferromagnetic Isin
model on the triangular lattice@9#, s0>0.323. The HLgen-
erated by the planar Wheatstone bridge with scaling fac
b52 is shown as an example of an apparently fully fru
trated system, but that in fact is a trivial case, with no effe
tive frustration. For the Sierpinski gasket, our calculation
in full agreement with previous works@20,21#. As pointed
out before, the Sierpinksi gasket may be seen as a triang
lattice with holes; such holes, which cancel some of the
teractions of the corresponding triangular lattice, contrib
to an increase in the ground-state degeneracy.

The application of the present methods for the study
other frustrated systems seems to be promising and ma
veal interesting results on open problems.
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